REACTIVITY AND STEREOSELECTIVITY IN THE CLEAVAGE OF COMPLEXES OF ACTIVATED ENANTIOMERIC SUBSTRATES WITH CYCLODEXTRINS.

Roberto Fornasier*, Paolo Scrimin and Umberto Tonellato* Centro "Meccanismi di Reazioni Organiche" del C.N.R., Istituto di Chimica Organica, Università di Padova, 35131 Padova, Italy.

Summary: Remarkable rate accelerations and enantioselectivities in the cleavage of the enantiomers of carbonate 1 and of ester 2 in the presence of α - and β -cyclodextrins are reported.

Processes in which a substrate binds into a cyclodextrin cavity and then undergoes reaction with one of the secondary cyclodextrin's hydroxyls have attracted intense interest¹ as models of enzymatic reactions. Rate enhancements²⁻⁴ and stereoselectivities³⁻⁴ have been reported for a number of reactions, particularly for the cleavage of activated esters.

We have investigated the reactivity of the enantiomers of <u>p</u>-nitrophenyl 2-octyl carbonate⁵, 1, and of <u>p</u>-nitrophenyl α -methoxyphenyl acetate⁶, 2, in the presence of cyclodextrins (CDX). On the basis of previous works^{2,3} and recent theories³, substrates 1 and 2 are very poor candidates for large rate enhancements; in view of that, the rate

$$C_{6}H_{13}$$
-CH(Me)-O-CO₂-pNP Ph-CH(OMe)-CO₂-pNF
1 R:(-); S:(+) 2 R:(-); S:(+)

accelerations, in one case, and the stereoselectivities observed appear quite remarkable.

Rate measurements were made for aqueous sodium carbonate buffers, pH 9.5-11.4, with added 1% v/v CH₃CN at 25°C. The observed first-order rate constants for the cleavage of substrates in the absence (k_{un}) and presence (k_{obs}) of α - or β -CDX (8 to 10 different CDX concentrations, being [CDX]»[substrate]) were determined. The values of K_d (the dissociation constant of the CDX-substrate complex, assuming a 1:1 stoichiometry) and $k_2=k_c-k_{un}$ (k_c is the first-order rate constant for the cleavage of fully bound substrate) were calculated as described². The results are summarized in the Table.

Carbonate 1 is cleaved within the CDX complexes at a much higher rate than expected if only the <u>p</u>-nitrophenyl moiety were included into the CDX cavity. Typical k_c/k_{un} values for <u>p</u>-nitrophenyl acetate^{2a} or <u>p</u>-nitrophenyl phenyl carbonate^{2b} are in the range 3-10, as measured under similar conditions and larger for β -CDX complexes, while that for the <u>R-1</u> complex with α -CDX is larger by almost two orders of magnitude. This suggests that the more reactive inclusion complex is the one with the alkyl chain inserted into the cavity. Indeed,

S	ubstrate	CDX	k _c x10 ² ,s ⁻¹	к _d ×10 ³ ,м	kc ^{/k} un	$\frac{\binom{(k_2/K_d)_R}{(k_2/K_d)_S}}{(k_2/K_d)_S}$
I	RINIRIO	α α β β	1.2 0.18 0.63 0.11	2.5(2.7) 5 (4.5) 4.4(4.5) 3.3(3.3)	240 (270) 35 (37) 125 (137) 22 (24)	13.5 (13) 7.7(7.8)
2	R R S R	α α β	8.9 7.1 31 6.0	9 (8.5) 11 (10) 3 (3) 4 (4.5)	3 (3.1) 2.5 (2.6) 10.5(10.3) 2 (2.1)	1.5(1.6) 13 (13.8)

Table. Binding and Rate Constants for the Cleavage of 1 and 2 in the Absence^a and in the Presence of Cyclodextrins, pH 10.5^{D} , 25° C.

^a k_{un},s⁻¹: 4.95x10⁻⁵ (1) and 2.9x10⁻² (2). ^b The average values determined at pH 9.5, 10.5, and 11.4 are shown in parentheses. Linear plots of log k_c or log k_{un} \underline{vs} pH of identical slopes were obtained.

molecular models show that, whereas both the aryl and the 2-octyl moieties may easily penetr<u>a</u> te the cyclodextrin's cavity, the complex with the alkyl chain inserted is quite properly located for interaction: a) of the carbonyl group with the secondary hydroxy functions, and b) of its chiral centre with the rigid chiral rim of cyclodextrins, thus providing a reasonable explanation for the remarkable accelerations and enantioselectivities observed.

In the case of 2 with α -CDX, the k_c/k_{un} values are similar to that reported for the <u>p</u>nitrophenylacetate and the enantioselectivity is very small. Molecular models indicate that only the <u>p</u>-nitrophenyl group penetrates the cavity and the aryl group of the mandelic acid portion is prevented from sufficiently deep and productive insertion by the α -methoxy group. Such mode of insertion is allowed, although by a small margin, in the cavity of β -CDX and could give rise to a more reactive complex with <u>R</u>-2 than the one with <u>p</u>-nitrophenyl moiety inserted. Kinetic data (although not model binding) would suggest that in the case of <u>S</u>-2 with β -CDX either such a complex is not formed in a significant amount or, if formed, is much less reactive than that with its enantiomer.

Further experiments aimed to substantiate the above hypotheses are in progress.

References and notes

- For reviews, cf.: Bender M.L. and Komiyama M., "Cyclodextrin Chemistry", Springer-Verlag, New York (1977); Tabushi I. Acc. Chem. Res., 15, 66 (1982)
- 2) a) Van Etten R.L., Sebastian J.F., Clowes G.A., and Bender M.L. J. Am. Chem. Soc., 89 3242, 3253 (1967). b) Brass H.J. and Bender M.L., <u>ibid.</u>, <u>95</u>, 5391 (1973)
- 3) a) Breslow R., Czarniecki M.F., Emert J., and Hamaguchi H., J. Am. Chem. Soc., 102, 762 (1980); b) Trainor G.L. and Breslow R., ibid., 103, 154 (1981); c) Breslow R., Trainor G., and Ueono A., ibid., 105, 2739 (1983)
- 4) Van Hooidonk C. and Breebaart-Hansen J.C.A.E., <u>Rec. Trav. Chim.</u>, <u>89</u>, 289 (1970); Daffe V. and Fastrez J., J. Chem. Soc., Perkin II, 789 (1983)
- 5) Obtained from the enantiomer of 2-octanol and p-nitrophenyl chloroformate by standard synthetic procedures: Fornasier R. and Tonellato U., J. Chem. Soc., Perkin II, in press
 6) Moss R.A. and Sunshine W.L., J. Org. Chem., 39, 1083 (1974)

(Received in UK 29 September 1983)